Use the information to graph f(x).

1.

$$f(-2) = f(1) = f(8) = 0$$

 $f'(-1) = f'(5) = 0$
 $f'(x) < 0$ for $x < -1$ or $x > 5$
 $f'(x) > 0$ for $-1 < x < 5$
 $f''(x) > 0$ for $x < 2$
 $f''(x) < 0$ for $x > 2$

2.

$$f(0) = 4$$

 $f(6) = 0$
 $f'(x) < 0$ for $x < 2$ or $x > 4$
 $f'(2)$ does not exist
 $f'(4) = 0$
 $f'(x) > 0$ for $2 < x < 4$
 $f''(x) < 0$ for $x \ne 2$