Algebra II – Chapter 4 Solving by Factoring Intervention

METHOD 1: GREATEST COMMON FACTOR

When to use this method: Try to use this method before using other methods. This will typically be the method to use if we only have two terms.

How to use this method: Find any numbers that all terms are disable by and factor them out front. Do the same with the powers of the variables.

Example:

$15x^2 + 35x = 0$	
5x(3x + 7) = 0	Both 15 and 35 are divisible by 5. Both terms
	have an x.
5x = 0 $3x + 7 = 0$	Set each part equal to 0.
x = 0 $x = -7/3$	Solve.

Check:

 $15(0)^2 + 35(0) = 0 + 0 = 0 \checkmark$ $15(-7/3)^2 + 35(-7/3) = 245/3 - 245/3 = 0 \checkmark$

Practice:

- 1) $x^3 + 3x^2 = 0$ 2) $12x^2 + 33x = 0$
- 3) $45x^4 25x^3 = 0$ 4) $12x^2 8x = 0$

METHOD 2: DIFFERENCE OF TWO SQUARES

When to use this method: Use this method when we have only 2 terms, there is subtraction between them, and both terms are perfect squares.

How to use this method: Take the square root of both terms, and then use those square roots to write your factored solution using the set up below.

$$a - b = 0$$

 $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = 0$
Example:
 $9x^2 - 25 = 0$
 $(3x + 5)(3x - 5) = 0$
 $3x + 5 = 0$ $3x - 5 = 0$
 $x = -5/3$ $x = 5/3$

 $\sqrt{9x^2} = 3x$ and $\sqrt{25} = 5$ Set each part equal to 0. Solve.

Check:

$$9(-5/3)^2 - 25 = 25 - 25 = 0 \checkmark$$

 $9(5/3)^2 - 25 = 25 - 25 = 0 \checkmark$

Practice:

- 1) $x^2 81 = 0$ 2) $49x^2 36 = 0$
- 3) $4x^2 100 = 0$ 4) $16x^2 64 = 0$

METHOD 3: FACTOR SUM

When to use this method: Use this method when we have 3 terms in the form: $ax^2 + bx + c = 0$

How to use this method: Create a factor/sum chart to find the two "key numbers" to help us factor.

FACTOR ac	SUM b	
What two numbers multiply to be ac?	And add to be b?	
Let these numbers		
be:		
n, m		
CASE 1: a = 1		
$ax^2 + bx + c = 0$		
(x + n)(x + m) =	0 Write in factored "key numbers."	form using the
$\mathbf{x} + \mathbf{n} = 0 \mathbf{x} + \mathbf{m}$	set each part equ	al to 0.
x = -n x = -n	n Solve.	
Example:	FACTOR	SUM
$x^2 + 8x + 12 = 0$	ac = 12	b = 8
a = 1 b = 8	1, 12	11 X
c = 12	3, 4	7 X
	2, 6	8 🖌
(x + 2)(x + 6)	Write in factored	form using
	"key numbers."	
x + 2 = 0 x + 6 =	= 0 Set each part equ	al to 0.

 $(-2)^2 + 8(-2) + 12 = 4 - 16 + 12 = 0 \checkmark$ $(-6)^2 + 8(-6) + 12 = 36 - 48 + 12 = 0 \checkmark$

Practice:

- 1) $x^2 11x + 30 = 0$ 2) $x^2 + 11x + 24 = 0$
- 3) $x^2 2x 15 = 0$ 4) $x^2 + 7x - 18 = 0$

FACTOR ac	SUM b	
What two numbers multiply to be ac?	And add to be b?	
Let these numbers be: n m		
CASE 2: $a \neq 1$ $ax^{2} + bx + c = 0$ $ax^{2} + mx + nx + c$	c = 0 Rewrite "b" term numbers." Then each part equal t	using the "key factor by grouping, set to 0, and solve.
Example: $2x^2 + 9x + 4 = 0$	FACTOR ac = 2(4) = 8	SUM b = 9
a = 2 b = 9 c = 4	2, 4 1, 8	6 ✗ 9 ✔
$2x^2 + 1x + 8x + 4$	Rewrite "b" term	using the "key
x(2x + 1) + 4(2x	(+ 1) Factor first two t terms using grea **Terms in the same.	erms and second two test common factor. n parentheses must be
(x + 4)(2x + 1)	Group terms in f	ront of parentheses

METHOD 3: FACTOR SUM (CONTINUED)

		togetner.
x + 4 = 0	2x + 1 = 0	Set each part equal to 0.
x = -4	x = -1/2	Solve.

Check:

 $2(-4)^2 + 9(-4) + 4 = 32 - 36 + 4 = 0 \checkmark$ $2(-1/2)^2 + 9(-1/2) + 4 = \frac{1}{2} - \frac{9}{2} + 4 = 0 \checkmark$

Practice:

1) $3x^2 + 16x - 12 = 0$ 2) $4x^2 - 4x - 3 = 0$

3) $5x^2 + 22x + 8 = 0$ 4) $2x^2 + 11x + 15 = 0$

METHOD 4: QUADRATIC FORMULA

When to use this method: This method will work every time you have an equation in the form $ax^2 + bx + c = 0$.

How to use this method: Use the quadratic formula.

From the use this method, one the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Example:

$$x^2 - 4x - 6 = 0$$

$$a = 1$$

$$b = -4$$

$$c = -6$$

$$x = \frac{-(-4)\pm\sqrt{(-4)^2 - 4(1)(-6)}}{2(1)}$$
Plug into the quadratic formula.

$$x = \frac{3\pm\sqrt{16+24}}{2}$$
Simplify.

$$x = \frac{3\pm\sqrt{40}}{2}$$
Simplify.

$$x = \frac{3\pm\sqrt{40}}{2}$$
Simplify the square root.

$$x = \frac{3\pm2\sqrt{10}}{2}$$

$$x = \frac{3-2\sqrt{10}}{2}$$
Break into two expressions.

$$x = \frac{3}{2} + \sqrt{10}$$

$$x = \frac{3}{2} - \sqrt{10}$$
Simplify if possible.

Practice:

1) $x^2 - x - 4 = 0$ 2) $x^2 + 3x - 6 = 0$

3) $4x^2 - 100 = 0$ 4) $3x^2 + 4x - 7 = 0$

ANSWERS:

Greatest Common Factor Practice:

1) $x^3 + 3x^2 = 0$	2) $12x^2 + 33x = 0$
x = 0, x = -3	x = 0, x = -11/4
3) $45x^4 - 25x^3 = 0$	4) $12x^2 - 8x = 0$
x = 0, x = 5/9	x = 0, x = 2/3

Perfect Square Practice:

1) $x^2 - 81 = 0$	2) $49x^2 - 36 = 0$
x = 9, x = -9	x = 6/7, x = -6/7
3) $4x^2 - 100 = 0$	4) $16x^2 - 64 = 0$
x = 5 x = -5	x = 2, x = -2

Factor Sum Practice 1:

1) $x^2 - 11x + 30 = 0$	2) $x^2 + 11x + 24 = 0$
x = 5, x = 6	x = -3, x = -8
3) $x^2 - 2x - 15 = 0$	4) $x^2 + 7x - 18 = 0$
x = -3, x = 5	x = -9, x = 2

Factor Sum Practice 2:

1) $3x^2 + 16x - 12 = 0$	2) $4x^2 - 4x - 3 = 0$
x = -6, x = 2/3	x = -1/2, x = 3/2
3) $5x^2 + 22x + 8 = 0$	4) $2x^2 + 11x + 15 = 0$

3) $5x^2 + 22x + 8 = 0$ x = -4, x = -2/54) $2x^2 + 11x + 15 = 0$ x = -3, x = -5/2

Quadratic Formula Practice:

1)
$$x^{2} - x - 4 = 0$$

 $x = (1 + \sqrt{17}), x = (1 - \sqrt{17})$
2) $x^{2} + 3x - 6 = 0$
 $x = (-3 + \sqrt{33}), x = (-3 - \sqrt{33})$
2) $4x^{2} - 100 = 0$
 $x = 5, x = -5$
4) $3x^{2} + 4x - 7 = 0$
 $x = -7/3, x = 1$