Algebra II - Chapter 4 Solving by Factoring Intervention

METHOD 1: GREATEST COMMON FACTOR

When to use this method: Try to use this method before using other methods. This will typically be the method to use if we only have two terms.

How to use this method: Find any numbers that all terms are disable by and factor them out front. Do the same with the powers of the variables.

Example:

$$
\begin{array}{ll}
\begin{array}{l}
15 x^{2}+35 x=0 \\
5 x(3 x+7)=0
\end{array} & \begin{array}{l}
\text { Both } 15 \text { and } 35 \text { are divisible by } 5 \text {. Both terms } \\
\text { have an } x .
\end{array} \\
5 x=0 \quad 3 x+7=0 & \text { Set each part equal to } 0 . \\
x=0 \quad x=-7 / 3 & \text { Solve. }
\end{array}
$$

Check:
$15(0)^{2}+35(0)=0+0=0 \boldsymbol{\rightharpoonup}$
$15(-7 / 3)^{2}+35(-7 / 3)=245 / 3-245 / 3=0 \boldsymbol{V}$

Practice:

1) $x^{3}+3 x^{2}=0$
2) $12 x^{2}+33 x=0$
3) $45 x^{4}-25 x^{3}=0$
4) $12 x^{2}-8 x=0$

METHOD 2: DIFFERENCE OF TWO SQUARES

When to use this method: Use this method when we have only 2 terms, there is subtraction between them, and both terms are perfect squares.

How to use this method: Take the square root of both terms, and then use those square roots to write your factored solution using the set up below.
$a-b=0$
$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=0$
Example:

$$
\begin{array}{ll}
9 x^{2}-25=0 & \\
(3 x+5)(3 x-5)=0 & \sqrt{9 x^{2}}=3 x \text { and } \sqrt{25}=5 \\
3 x+5=0 \quad 3 x-5=0 & \text { Set each part equal to } 0 . \\
x=-5 / 3 \quad x=5 / 3 & \text { Solve. }
\end{array}
$$

Check:

$$
\begin{aligned}
& 9(-5 / 3)^{2}-25=25-25=0 \boldsymbol{\imath} \\
& 9(5 / 3)^{2}-25=25-25=0 \boldsymbol{\downarrow}
\end{aligned}
$$

Practice:

1) $x^{2}-81=0$
2) $49 x^{2}-36=0$
3) $4 x^{2}-100=0$
4) $16 x^{2}-64=0$

METHOD 3: FACTOR SUM

When to use this method: Use this method when we have 3 terms in the form: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

How to use this method: Create a factor/sum chart to find the two "key numbers" to help us factor.

| FACTOR |
| :---: | :---: |
ac	\quad	SUM	
b	$	$	What two numbers
:---			
multiply to be ac?			
Let these numbers			
be: \quad And add to be $\mathrm{b} ?$			

CASE 1: $\mathbf{a}=1$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& (x+n)(x+m)=0 \\
& x+n=0 \quad x+m=0 \\
& x=-n \quad x=-m
\end{aligned}
$$

$$
(x+n)(x+m)=0 \quad \text { Write in factored form using the }
$$

"key numbers."

Set each part equal to 0 .
Solve.

Example:

$$
\begin{aligned}
& x^{2}+8 x+12=0 \\
& a=1 \\
& b=8 \\
& c=12
\end{aligned}
$$

$$
(x+2)(x+6)
$$

$$
x+2=0 \quad x+6=0
$$

$$
x=-2 \quad x=-6
$$

FACTOR $\mathrm{ac}=12$	SUM $\mathrm{b}=8$
1,12	11 x 3,4 2,6
Write in factored form using "key numbers." Set each part equal to 0.	
Solve.	

Check:

$$
(-2)^{2}+8(-2)+12=4-16+12=0 \boldsymbol{V}
$$

$$
(-6)^{2}+8(-6)+12=36-48+12=0 \boldsymbol{\nu}
$$

Practice:

1) $x^{2}-11 x+30=0$
2) $x^{2}+11 x+24=0$
3) $x^{2}-2 x-15=0$
4) $x^{2}+7 x-18=0$

METHOD 3: FACTOR SUM (CONTINUED)

| FACTOR |
| :---: | :---: |
| ac |\quad SUM | b |
| :---: |
| What two numbers
 multiply to be ac? |
| Let these numbers
 be: \quad And add to be $b ?$ |

CASE 2: $\mathbf{a} \neq 1$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& a x^{2}+m x+n x+c=0
\end{aligned}
$$

Rewrite "b" term using the "key numbers." Then factor by grouping, set each part equal to 0 , and solve.

Example:

$$
\begin{aligned}
& 2 x^{2}+9 x+4=0 \\
& a=2 \\
& b=9 \\
& c=4
\end{aligned}
$$

FACTOR ac $=2(4)=8$	SUM $\mathrm{b}=9$
2,4	$6 x$
1,8	$9 \boldsymbol{\checkmark}$

$$
2 x^{2}+1 x+8 x+4
$$

Rewrite "b" term using the "key numbers"

$$
x(\mathbf{2 x}+\mathbf{1})+4(\mathbf{2 x}+\mathbf{1})
$$

Factor first two terms and second two terms using greatest common factor.
**Terms in parentheses must be the same.

$$
(x+4)(2 x+1)
$$

Group terms in front of parentheses together.

$$
x+4=0 \quad 2 x+1=0
$$

Set each part equal to 0 .

$$
x=-4 \quad x=-1 / 2
$$

Solve.

Check:

$$
\begin{aligned}
& 2(-4)^{2}+9(-4)+4=32-36+4=0 \boldsymbol{\imath} \\
& 2(-1 / 2)^{2}+9(-1 / 2)+4=1 / 2-9 / 2+4=0 \boldsymbol{V}
\end{aligned}
$$

Practice:

1) $3 x^{2}+16 x-12=0$
2) $4 x^{2}-4 x-3=0$
3) $5 x^{2}+22 x+8=0$
4) $2 x^{2}+11 x+15=0$

METHOD 4: QUADRATIC FORMULA

When to use this method: This method will work every time you have an equation in the form $a^{2}+b x+c=0$.

How to use this method: Use the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example:

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{x}^{2}-4 \mathrm{x}-6=0 \\
\mathrm{a}=1 \\
\mathrm{~b}=-4 \\
\mathrm{c}=-6
\end{array} & \\
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-6)}}{2(1)} & \text { Plug into the quadratic formula. } \\
x=\frac{3 \pm \sqrt{16+24}}{2} & \text { Simplify. } \\
x=\frac{3 \pm \sqrt{40}}{2} & \text { Simplify. } \\
x=\frac{3 \pm 2 \sqrt{10}}{2} & \text { Simplify the square root. } \\
x=\frac{3+2 \sqrt{10}}{2} \quad x=\frac{3-2 \sqrt{10}}{2} & \text { Break into two expressions. } \\
x=\frac{3}{2}+\sqrt{10} \quad x=\frac{3}{2}-\sqrt{10} & \text { Simplify if possible. }
\end{array}
$$

Practice:

1) $x^{2}-x-4=0$
2) $x^{2}+3 x-6=0$
3) $4 x^{2}-100=0$
4) $3 x^{2}+4 x-7=0$

ANSWERS:

Greatest Common Factor Practice:

1) $\begin{aligned} x^{3}+3 x^{2} & =0 \\ x & =0, x=-3\end{aligned}$
2) $45 x^{4}-25 x^{3}=0$ $x=0, x=5 / 9$
3) $12 x^{2}+33 x=0$
$x=0, x=-11 / 4$
4) $12 x^{2}-8 x=0$
$x=0, x=2 / 3$

Perfect Square Practice:

1) $x^{2}-81=0$

$$
x=9, x=-9
$$

2) $49 x^{2}-36=0$
$x=6 / 7, x=-6 / 7$
3) $4 x^{2}-100=0$

$$
x=5 x=-5
$$

4) $16 x^{2}-64=0$
$x=2, x=-2$

Factor Sum Practice 1:

1) $x^{2}-11 x+30=0$
2) $x^{2}+11 x+24=0$

$$
x=5, x=6
$$

$$
x=-3, x=-8
$$

3) $x^{2}-2 x-15=0$
$x=-3, x=5$
4) $x^{2}+7 x-18=0$

$$
x=-9, x=2
$$

Factor Sum Practice 2:

1) $3 x^{2}+16 x-12=0$ $x=-6, x=2 / 3$
2) $4 x^{2}-4 x-3=0$
$x=-1 / 2, x=3 / 2$
3) $5 x^{2}+22 x+8=0$ $x=-4, x=-2 / 5$
4) $2 x^{2}+11 x+15=0$
$x=-3, x=-5 / 2$

Quadratic Formula Practice:

1) $x^{2}-x-4=0$

$$
x=\frac{(1+\sqrt{17}), x}{2}=\frac{(1-\sqrt{17})}{2}
$$

3) $\begin{aligned} 4 x^{2}-100 & =0 \\ x=5, & x=-5\end{aligned}$
4) $x^{2}+3 x-6=0$
$x=\left(\frac{-3+\sqrt{33})}{2}, x=\frac{(-3-\sqrt{33})}{2}\right.$
5) $3 x^{2}+4 x-7=0$
$x=-7 / 3, x=1$
